Здоровье Беременность Красота

Натуральные числа и их свойства. Изучение точного предмета: натуральные числа — это какие числа, примеры и свойства Какие цифры натуральные

История натуральных чисел началась ещё в первобытные времена. Издревле люди считали предметы. Например, в торговле нужен был счет товара или в строительстве счет материала. Да даже в быту тоже приходилось считать вещи, продукты, скот. Сначала числа использовались только для подсчета в жизни, на практике, но в дальнейшем при развитии математики стали частью науки.

Натуральные числа – это числа которые мы используем при счете предметов.

Например: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ….

Нуль не относится к натуральным числам.

Все натуральные числа или назовем множество натуральных чисел обозначается символом N.

Таблица натуральных чисел.

Натуральный ряд.

Натуральные числа, записанные подряд в порядке возрастания, образуют натуральный ряд или ряд натуральных чисел.

Свойства натурального ряда:

  • Наименьшее натуральное число – единица.
  • У натурального ряда следующее число больше предыдущего на единицу. (1, 2, 3, …) Три точки или троеточие ставятся в том случае, если закончить последовательность чисел невозможно.
  • Натуральный ряд не имеет наибольшего числа, он бесконечен.

Пример №1:
Напишите первых 5 натуральных числа.
Решение:
Натуральные числа начинаются с единицы.
1, 2, 3, 4, 5

Пример №2:
Нуль является натуральным числом?
Ответ: нет.

Пример №3:
Какое первое число в натуральном ряду?
Ответ: натуральный ряд начинается с единицы.

Пример №4:
Какое последнее число в натуральном ряде? Назовите самое большое натуральное число?
Ответ: Натуральный ряд начинается с единицы. Каждое следующее число больше предыдущего на единицу, поэтому последнего числа не существует. Самого большого числа нет.

Пример №5:
У единицы в натуральном ряду есть предыдущее число?
Ответ: нет, потому что единица является первым числом в натуральном ряду.

Пример №6:
Назовите следующее число в натуральном ряду за числами: а)5, б)67, в)9998.
Ответ: а)6, б)68, в)9999.

Пример №7:
Сколько чисел находится в натуральном ряду между числами: а)1 и 5, б)14 и 19.
Решение:
а) 1, 2, 3, 4, 5 – три числа находятся между числами 1 и 5.
б) 14, 15, 16, 17, 18, 19 – четыре числа находятся между числами 14 и 19.

Пример №8:
Назовите предыдущее число за числом 11.
Ответ: 10.

Пример №9:
Какие числа применяются при счете предметов?
Ответ: натуральные числа.

Натуральные числа и их свойства

Для счёта предметов в жизни используют натуральные числа. В записи любого натурального числа используются цифры $0,1,2,3,4,5,6,7,8,9$

Последовательность натуральных чисел, каждое следующее число в котором на $1$ больше предыдущего, образует натуральный ряд , который начинается с единицы (т.к. единица- самое маленькое натуральное число) и не имеет наибольшего значения, т.е. бесконечен.

Нуль не относят к натуральным числам.

Свойства отношения следования

Все свойства натуральных чисел и операций над ними следуют из четырех свойств отношений следования, которые были сформулированы в $1891$ г. Д.Пеано:

    Единица- натуральное число, которое не следует ни за каким натуральным числом.

    За каждым натуральным числом следует одно и только одно число

    Каждое натуральное число, отличное от $1$, следует за одним и только одним натуральным числом

    Подмножество натуральных чисел, содержащее число $1$, а вместе с каждым числом и следующее за ним число, содержит все натуральные числа.

Если запись натурального числа состоит из одной цифры его называют однозначным (например, $2,6.9$ и т.д.), если запись состоит из двух цифр-двузначным(например,$12,18,45$) и т.д. по аналогии. Двузначные, трехзначные, четырехзначные и т.д. числа называют в математике многозначными.

Свойство сложения натуральных чисел

    Переместительное свойство: $a+b=b+a$

    Сумма не изменяется при перестановке слагаемых

    Сочетательное свойство: $a+ (b+c) =(a+b) +c$

    Чтобы прибавить к числу сумму двух чисел, можно сначала прибавить первое слагаемое, а потом, к полученной сумме- второе слагаемое

    От прибавления нуля число не измениться и если прибавить к нулю какое- нибудь число, то получится прибавленное число.

Свойства вычитания

    Свойство вычитания суммы из числа $a-(b+c) =a-b-c$ если $b+c ≤ a$

    Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а затем из полученной разности- второе слагаемое

    Свойство вычитания числа из суммы $(a+b) -c=a+(b-c)$, если $c ≤ b$

    Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое

    Если из числа вычесть нуль, то число не изменится

    Если из числа вычесть его само, то получится нуль

Свойства умножения

    Переместительное $a\cdot b=b\cdot a$

    Произведение двух чисел не изменяется при перестановке множителей

    Сочетательное $a\cdot (b\cdot c)=(a\cdot b)\cdot c$

    Чтобы умножить число на произведение двух чисел,можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель

    При умножении на единицу произведение не изменяется $m\cdot 1=m$

    При умножении на нуль произведение равно нулю

    Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо

Свойства умножения относительно сложения и вычитания

    Распределительное свойство умножения относительно сложения

    $(a+b)\cdot c=ac+bc$

    Для того чтобы умножить сумму на число,можно умножить на это число каждое слагаемое и сложить получившиеся произведения

    Например, $5(x+y)=5x+5y$

    Распределительное свойство умножение относительно вычитания

    $(a-b)\cdot c=ac-bc$

    Для того,чтобы умножить разность на число,множно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе

    Например, $5(x-y)=5x-5y$

Сравнение натуральных чисел

    Для любых натуральных чисел $a$ и $b$ может выполняться только одно из трех соотношений $a=b$, $a

    Меньшим считается число, которое в натуральном ряду появляется раньше, а большим, которое появляется позже. Нуль меньше любого натурального числа.

    Пример 1

    Сравнить числа $a$ и $555$, если известно, что существует некоторое число $b$, причем выполняются соотношения: $a

    Решение : На основании указанного свойства,т.к. по условию $a

    в любом подмножестве натуральных чисел, содержащем хотя бы одно число, есть наименьшее число

    Подмножеством в математике называют часть множества. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества

Часто для сравнения чисел находят их разность и сравнивают ее с нулем. Если разность больше $0$, но первое число больше второго, если разность меньше $0$, то первое число меньше второго.

Округление натуральных чисел

Когда полная точность не нужна, или не возможна,числа округляют,т.е заменяют их близкими числами с нулями на конце.

Натуральные числа округляют до десятков, сотен,тысяч и т.д

При округлеии числа до десятков его заменяют ближайшим числом,состоящим из целых десятков; у такого числа в разряде единиц стоит цифра $0$

При округлеии числа до сотен его заменяют ближайшим числом,состоящим из целых сотен; у такого числа в разряде десятков и единиц должна стоять цифра $0$. И т.д

Числа,до которых округляют данное называют приближенным значением числа с точностью до указанных разрядов.Например если округлять число $564$ до десятков то получим, что округлить его можно с недостатком и получить $560$, или с избытком и получить $570$.

Правило округления натуральных чисел

    Если справа от разряда, до которого округляют число, стоит цифра $5$ или цифра,большая $5$, то к цифре этого разряда прибавляют $1$; в противном случае эту цифру оставляют без изменения

    Все цифры, расположенные правее разряда, до которого округляют число,заменяют нулями

Определение

Натуральными числами называются числа, которые используются при счете или для указания порядкового номера предмета среди однородных предметов.

Например. Натуральными будут такие числа: $2,37,145,1059,24411$

Натуральные числа, записанные в порядке возрастания, образуют числовой ряд. Он начинается с наименьшего натурально числа 1. Множество всех натуральных чисел обозначают $N=\{1,2,3, \dots n, \ldots\}$. Оно бесконечно, так как не существует наибольшего натурального числа. Если к любому натуральному числу прибавить единицу, то получаем натуральное число, следующее за данным числом.

Пример

Задание. Какие из следующих чисел являются натуральными?

$$-89 ; 7 ; \frac{4}{3} ; 34 ; 2 ; 11 ; 3,2 ; \sqrt{129} ; \sqrt{5}$$

Ответ. $7 ; 34 ; 2 ; 11$

На множестве натуральных чисел вводится две основные арифметические операции - сложение и умножение . Для обозначения этих операций используются соответственно символы " + " и " " (или " × " ).

Сложение натуральных чисел

Каждой паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число $s$, называемое суммой. Сумма $s$ состоит из стольких единиц, сколько их содержится в числах $n$ и $m$. О числе $s$ говорят, что оно получено в результате сложения чисел $n$ и $m$, и пишут

Числа $n$ и $m$ называются при этом слагаемыми. Операция сложения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n+m=m+n$
  2. Ассоциативность: $(n+m)+k=n+(m+k)$

Подробнее о сложении чисел читайте по ссылке .

Пример

Задание. Найти сумму чисел:

$13+9 \quad$ и $ \quad 27+(3+72)$

Решение. $13+9=22$

Для вычисления второй суммы, для упрощения вычислений, применим к ней вначале свойство ассоциативности сложения:

$$27+(3+72)=(27+3)+72=30+72=102$$

Ответ. $13+9=22 \quad;\quad 27+(3+72)=102$

Умножение натуральных чисел

Каждой упорядоченной паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число $r$, называемое их произведением. Произведение $r$ содержит стольких единиц, сколько их содержится в числе $n$, взятых столько раз, сколько единиц содержится в числе $m$. О числе $r$ говорят, что оно получено в результате умножения чисел $n$ и $m$, и пишут

$n \cdot m=r \quad $ или $ \quad n \times m=r$

Числа $n$ и $m$ называются множителями или сомножителями.

Операция умножения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n \cdot m=m \cdot n$
  2. Ассоциативность: $(n \cdot m) \cdot k=n \cdot(m \cdot k)$

Подробнее о умножении чисел читайте по ссылке .

Пример

Задание. Найти произведение чисел:

12$\cdot 3 \quad $ и $ \quad 7 \cdot 25 \cdot 4$

Решение. По определению операции умножения:

$$12 \cdot 3=12+12+12=36$$

Ко второму произведению применим свойство ассоциативности умножения:

$$7 \cdot 25 \cdot 4=7 \cdot(25 \cdot 4)=7 \cdot 100=700$$

Ответ. $12 \cdot 3=36 \quad;\quad 7 \cdot 25 \cdot 4=700$

Операция сложения и умножения натуральных чисел связаны законом дистрибутивности умножения относительно сложения:

$$(n+m) \cdot k=n \cdot k+m \cdot k$$

Сумма и произведение любых двух натуральных чисел всегда есть число натуральное, поэтому множество всех натуральных чисел замкнуто относительно операций сложения и умножения.

Так же на множестве натуральных чисел можно ввести операции вычитания и деления , как операции обратные к операциям сложения и умножения соответственно. Но эти операции не будут однозначно определенны для любой пары натуральных чисел.

Свойство ассоциативности умножения натуральных чисел позволяет ввести понятие натуральной степени натурального числа: $n$-й степенью натурального числа $m$ называется натуральное число $k$, полученное в результате умножения числа $m$ самого на себя $n$ раз:

Для обозначения $n$-й степени числа $m$ обычно используется запись: $m^{n}$, в котором число $m$ называется основанием степени , а число $n$ - показателем степени .

Пример

Задание. Найти значение выражения $2^{5}$

Решение. По определению натуральной степени натурального числа это выражение можно записать следующим образом

$$2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$$

В математике существует несколько различных множеств чисел: действительные, комплексные, целые, рациональные, иррациональные, … В нашей повседневной жизни мы чаще всего используем натуральные числа, так как мы сталкиваемся с ними при счете и при поиске, обозначении количества предметов.

Вконтакте

Какие числа называются натуральными

Из десяти цифр можно записать абсолютно любую существующую сумму классов и разрядов. Натуральными значениями считаются те, которые используются :

  • При счете каких-либо предметов (первый, второй, третий, … пятый, … десятый).
  • При обозначении количества предметов (один, два, три…)

N значения всегда целые и положительные. Наибольшего N не существует, так как множество целых значений не ограничено.

Внимание! Натуральные числа получаются при счете предметов или при обозначении их количества.

Абсолютно любое число может быть разложено и представлено в виде разрядных слагаемых, например: 8.346.809=8 миллионов+346 тысяч+809 единиц.

Множество N

Множество N находится в множестве действительных, целых и положительных . На схеме множеств они бы находились друг в друге, так как множество натуральных является их частью.

Множество натуральных чисел обозначается буквой N. Это множество имеет начало, но не имеет конца.

Еще существует расширенное множество N, где включается нуль.

Наименьшее натуральное число

В большинстве математических школ наименьшим значением N считается единица , так как отсутствие предметов считается пустотой.

Но в иностранных математических школах, например во французской, считается натуральным. Наличие в ряде нуля облегчает доказательство некоторых теорем .

Ряд значений N, включающий в себя нуль, называется расширенным и обозначается символом N0 (нулевой индекс).

Ряд натуральных чисел

N ряд – это последовательность всех N совокупностей цифр. Эта последовательность не имеет конца.

Особенность натурального ряда заключается в том, что последующее число будет отличаться на единицу от предыдущего, то есть возрастать. Но значения не могут быть отрицательными .

Внимание! Для удобства счета существуют классы и разряды:

  • Единицы (1, 2, 3),
  • Десятки (10, 20, 30),
  • Сотни (100, 200, 300),
  • Тысячи (1000, 2000, 3000),
  • Десятки тысяч (30.000),
  • Сотни тысяч (800.000),
  • Миллионы (4000000) и т.д.

Все N

Все N находятся во множестве действительных, целых, неотрицательных значений. Они являются их составной частью .

Эти значения уходят в бесконечность, они могут принадлежать классам миллионов, миллиардов, квинтиллионов и т.д.

Например:

  • Пять яблок, три котенка,
  • Десять рублей, тридцать карандашей,
  • Сто килограммов, триста книг,
  • Миллион звезд, три миллиона человек и т.д.

Последовательность в N

В разных математических школах можно встретить два интервала, которым принадлежит последовательность N:

от нуля до плюс бесконечности, включая концы, и от единицы до плюс бесконечности, включая концы, то есть все положительные целые ответы .

N совокупности цифр могут быть как четными, так и не четными. Рассмотрим понятие нечетности.

Нечетные (любые нечетные оканчиваются на цифры 1, 3, 5, 7, 9.) при на два имеют остаток. Например, 7:2=3,5, 11:2=5,5, 23:2=11,5.

Что значит четные N

Любые четные суммы классов оканчиваются на цифры: 0, 2, 4, 6, 8. При делении четных N на 2, остатка не будет, то есть в результате получается целый ответ. Например, 50:2=25, 100:2=50, 3456:2=1728.

Важно! Числовой ряд из N не может состоять только из четных или нечетных значений, так как они должны чередоваться: за четным всегда идет нечетное, за ним снова четное и т.д.

Свойства N

Как и все другие множества, N обладают своими собственными, особыми свойствами. Рассмотрим свойства N ряда (не расширенного).

  • Значение, которое является самым маленьким и которое не следует ни за каким другим – это единица.
  • N представляют собой последовательность, то есть одно натуральное значение следует за другим (кроме единицы – оно первое).
  • Когда мы производим вычислительные операции над N суммами разрядов и классов (складываем, умножаем), то в ответе всегда получается натуральное значение.
  • При вычислениях можно использовать перестановку и сочетание.
  • Каждое последующее значение не может быть меньше предыдущего. Также в N ряде будет действовать такой закон: если число А меньше В, то в числовом ряде всегда найдется С, для которого справедливо равенство: А+С=В.
  • Если взять два натуральных выражения, например А и В, то для них будет справедливо одно из выражений: А=В, А больше В, А меньше В.
  • Если А меньше В, а В меньше С, то отсюда следует, что А меньше С .
  • Если А меньше В, то следует, что: если прибавить к ним одно и то же выражение (С), то А+С меньше В+С. Также справедливо, что если эти значения умножить на С, то АС меньше АВ.
  • Если В больше А, но меньше С, то справедливо: В-А меньше С-А.

Внимание! Все вышеперечисленные неравенства действительны и в обратном направлении.

Как называются компоненты умножения

Во многих простых и даже сложных задачах нахождение ответа зависит от умения школьников .

Для того, чтобы быстро и правильно умножать и уметь решать обратные задачи, необходимо знать компоненты умножения.

15. 10=150. В данном выражении 15 и 10 являются множителями , а 150 – произведением.

Умножение обладает свойствами, которые необходимы при решении задач, уравнений и неравенств:

  • От перестановки множителей конечное произведение не изменится.
  • Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель (справедливо для всех множителей).

Например: 15. Х=150. Разделим произведение на известный множитель. 150:15=10. Сделаем проверку. 15. 10=150. По такому принципу решаются даже сложные линейные уравнения (если упростить их).

Важно! Произведение может состоять не только из двух множителей. Например: 840=2. 5. 7. 3. 4

Что такое натуральные числа в математике?

Разряды и классы натуральных чисел

Вывод

Подведем итоги. N используются при счете или обозначении количества предметов. Ряд натуральных совокупностей цифр бесконечен, но он включает в себя только целые и положительные суммы разрядов и классов. Умножение тоже необходимо для того, чтобы считать предметы , а также для решения задач, уравнений и различных неравенств.

Числа - это абстрактное понятие. Они являются количественной характеристикой объектов и бывают действительные, рациональные, отрицательные, целые и дробные, а также натуральные.

Натуральный ряд обычно используют при счёте, в котором естественным образом возникают обозначения количества. Знакомство со счётом начинается в самом раннем детстве. Какой малыш избежал смешных считалок, в которых как раз использовались элементы натурального счёта? "Раз, два, три, четыре, пять... Вышел зайчик погулять!" или "1, 2, 3, 4, 5, 6, 7, 8, 9, 10, царь решил меня повесить..."

Для любого натурального числа можно найти другое, большее его. Это множество принято обозначать буквой N и следует считать бесконечным в сторону возрастания. А вот начало у этого множество есть - это единица. Хотя существуют французские натуральные числа, в множество которых входит также и ноль. Но основными отличительными чертами и того, и другого множества является тот факт, что в них не входят ни дробные, ни отрицательные числа.

Потребность в пересчёте самых разных предметов возникла ещё в доисторические времена. Тогда предположительно сформировалось понятие «натуральные числа». Его формирование происходило на протяжении всего процесса изменения мировоззрения человека, развития науки и техники.

Однако не могли ещё мыслить абстрактно. Им сложно было уяснить, в чём заключается общность понятий «три охотника» или «три дерева». Поэтому при указании количества людей использовалось одно определение, а при указании того же количества предметов другого рода - совершенно другое определение.

Причём был чрезвычайно коротким. В нём присутствовали лишь числа 1 и 2, а заканчивался счёт понятием «много», «стадо», «толпа», «куча».

Позднее сформировался более прогрессивный счёт, уже более широкий. Интересен тот факт, что существовало всего два числа - 1 и 2, а следующие числа получались уже добавлением.

Примером этому послужили дошедшие до нас сведения о числовом ряде австралийского племени У них 1 обозначало слово «Энза», а 2 - слово «петчевал». Число 3 поэтому звучало как «петчевал-Энза», а 4 - уже как «петчевал-петчевал».

Большинство народов эталоном счёта признавали пальцы. Далее развитие абстрактного понятия «натуральные числа» пошло по пути использования зарубок на палочке. И тут встала необходимость обозначения десятка другим знаком. Древние люди наши выход - стали использовать другую палочку, на которой делались зарубки, обозначающие десятки.

Возможности в воспроизведении чисел чрезвычайно расширились с появлением письменности. Поначалу числа изображались чёрточками на глиняных табличках или папирусе, но постепенно стали использоваться другие значки для записи Так появились римские цифры.

Значительно позднее появились которые открыли возможность записи чисел сравнительно небольшим набором символов. Сегодня не составляет особого труда записать столь громадные числа, как расстояние между планетами и количество звёзд. Стоит только научиться пользоваться степенями.

Евклид в 3 веке до нашей эры в книге «Начала» устанавливает бесконечность числового множества А Архимед в «Псамите» раскрывает принципы для построения названий сколь угодно крупных чисел. Почти до середины 19 века перед людьми не вставала необходимость чёткой формулировки понятия «натуральные числа». Определение потребовалось с появлением аксиоматического математического метода.

И в 70-х годах 19 века сформулировал чёткое определение натуральных чисел, основанное на понятии множества. И вот сегодня мы уже знаем, что натуральные числа - это все целые числа, начиная от 1 и до бесконечности. Маленькие дети, делая свой первый шаг в знакомстве с царицей всех наук - математикой - начинают изучать именно эти числа.